MECHATRONICS TUTORIAL

GUIDE

48610 Introduction to Mechanical and Mechatronic
Engineering

"Learners need to get involved with new knowledge in order to consolidate
their own understanding, and this cannot be done just through hearing
information being presented clearly and logically by an expert. They will
almost certainly need to try to use it themselves, under different
circumstances, if they are to make the knowledge their own." — Neil Mercer,
The Guided Construction of Knowledae - Talk Amonast Teachers and

Acknowledgements: Thank you to my students Jason Ho,
Atlas Huang and Peter de Jersey who have made significant
contributions to the content and development of this guide.

Spring 2018

Terry.Brown@uts.edu.au

Table of Contents

1. Introduction

2. Week9

2.1 Background

2.1.1
2.1.2
2.1.3
214
2.15
2.1.6
2.1.7

Electronics Fundamentals (1 Hour 17 Minutes)

Learning Arduino (~30mins)

Installing the Arduino IDE

Wiring
Resistors
LEDs

Schematics

2.2 Tutorial Exercises

2.2.1 Exercise 1:
2.2.2 Exercise 2:
2.2.3 Exercise 3:
2.2.4 Exercise 4:
2.2.5 Exercise 5:
2.2.6 Exercise 6:
2.2.7 Exercise 7:
2.2.8 Exercise 8:
2.2.9 Exercise 9:
3. Week 10

3.1 Background

3.11
3.1.2

Electronics Fundamentals (~ 40 mins)

Simple LED Circuit

LED Challenge

Blink

Blink the LED on breadboard

Blink SOS

Add a Pushbutton to turn LED on and off
Add a Pushbutton to Blink SOS
Potentiometer with LED

Potentiometer challenge

Learning Arduino (~ 30 mins)

3.2 Tutorial Exercises

3.2.1

Exercise 1:

Use a Potentiometer to Generate an Analog Signal

Code for PotRead sketch

3.2.2
3.2.3
3.24
3.25
3.2.6
3.2.7

Exercise 2:
Exercise 3:
Exercise 4:
Exercise 5:
Exercise 6:

Exercise 7:

Use Analog Signal

LED and Photo Interrupter

Line trace sensor

Line trace sensor with serial plotter

Line trace sensor with digital output to control a LED

WPV desktop prototype

Arduino coding cheat sheet

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

3
3
3

Error! Bookmark not defined.

O 00 N O b~ W

11
11
12
12
13
14
16
17
17
17
18
18

Error! Bookmark not defined.

18
18
18
19
20
22
23
24
26
29
30

Page 2 of 30

1. Introduction
Mechatronics is at the forefront of innovation and can be seen everywhere; from autonomous
vehicles, to home automation, to robot arms, to satellites, and more.
By the end of this module you will have the foundations required to go out and make your own
mechatronic systems.

2. Week 9

2.1 Background

2.1.1 Learning Arduino
You should have watched the following sections from the Lynda.com course Learning Arduino (aka
Up and Running with Arduino)
Introduction (4 mins)
e 1. Getting Started (11 mins)
e 2. Electronic Components (16 min)
e 3. Arduino Uno (21 min)

Use the link from the Week 9 to 11 Folder in Weekly Learning Materials on UTSOnline. Alternatively,
you can access the course here:
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

2.1.2 Electronics Fundamentals
If you need to brush up on your high-school science knowledge of electricity, you should have
watched the following sections of the Lynda.com course Electronics Foundations: Fundamentals
e Introduction (4 mins)
e 1. Fundamentals of electricity (33 mins)
® 2. Multi-meter measurements (12 mins)

Use the link from the Week 9 to 11 Folder in Weekly Learning Materials on UTSOnline. Alternatively,
you can access the course here:
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-
Fundamentals/197537-2.html?org=uts.edu.au

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 3 of 30

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au

2.1.3 Installing the Arduino IDE

The Lynda.com course Learning
Arduino went through how to
download and install the Arduino IDE.
Only brief instructions are provided
here. The Arduino IDE can be
downloaded from the link shown
below.

You will be asked if you want to donate,
if you do not want to, just click the “just
download” button. Once downloaded
and installed, run the Arduino IDE. It
will look something like Figure 1. When
you plug the board in via the USB cable,
drivers should be downloaded and
installed automatically. Some
computers (especially macs) sometimes
have a problem with this. If you have
trouble, go to the Arduino
troubleshooting page. You can also
refer to this online guide.

Vi rifym—

Coding
Area

Debugaing
Consale

https://www.arduino.cc/en/Main/Software

Upload Sketch to Arduino

Open Serial Monitor

-

—

(&9 sketfh_may03a | Arduino 1.6.8

i e

void setup() { -
// put your setup code here, to run once:

1

volid loop() {
f/ put your main code here, to run repeatedly:

}

sketch_may03a

Sketch Tools Help

Figure 1 - Arduino IDE

Before you can interact with, and upload code to, your Arduino, it’s important that you select the
correct board. After you plug in your board, select it from the Tools -> Board menu.

-

&5 Blink | Arduino 1.8.5

File Edit Sketch [Tools| Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Serial Monitor

Serial Plotter

[~3

L

WIiFil01 Firmware Updater

Board:; "Arduino/Genuino Una”

[83

[}

Get Board Info

Programmer: "AVRISP mkIl"
© Burn Bootloader

10
11

~
<

13

Ctrl+T

Ctrl+5Shift+M

Ctrl+5Shift+L

%

Port: "COM14 (Arduino/Genuino Uno)”

Boards Manager...

Arduino AVR Boards

Arduino Ydn

Arduino/Genuino Uno

Arduino Duemilanove or%iecimila
Arduino Nano

Arduino/Genuinoc Mega or Mega 2560
Arduino Mega ADK

Arduino Leonardo

Arduino Leonardo ETH
Arduino/Genuino Micro

Figure 2 - Make sure you select your board after plugging in

Before you can upload code to your Arduino, it’s important that you select the correct port your
board is on. After you plug in your board, select it from the Tools -> Port menu (see below).

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Page 4 of 30

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.arduino.cc/en/Guide/Troubleshooting#toc1
https://www.arduino.cc/en/Guide/Troubleshooting#toc1
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://www.arduino.cc/en/Main/Software

=2 Blink | Arduino 1.8.:

File Edit Sketch |TD{:-I5 Help

Blink
21
22 ht
23 |*/

24
25 // t
268void
27 /

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: "Arduino/Genuino Una”
Port: "COM14 (Arduino/Genuino Uno)” [:i
et Board Info

Programmer: "AVRISP mkIl"
Burn Bootloader

Serial ports
COM3

v COMH&\rduino{Genuino Uno)

rn

ED_BUILTIN as an
28 pinMode(LED_BUILTIN, OUTPUT) ;

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Page 5 of 30

2.1.4 Wiring
Wiring is required to connect electrical components together according to the schematics and circuit
diagrams. It is common practice to start from the power source and use electrical wires/cables to
connect each component one after another.

The process is similar to connecting a piping system. In this subject, we use a breadboard and jumper
cables for wiring (Refer to Figure 3 & 4). Breadboard and jumper cables are often used for

prototyping because they can be easily assembled and disassembled.

Have a look at Figure 4, which shows an x-ray of the board. You can see that the pins in the middle of
the board are connected horizontally, and the rails on the outside are connected vertically.

Breadboards should only be used for prototyping. Once circuit design has been finalised, printed
circuit boards (PCB) should be produced and used.

-

Figure 3 - Breadboard & Jumper Cables

OO OO OO (00— 00

Figure 4 - Breadboard "X-Ray"

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 6 of 30

2.1.5 Resistors

If you look at circuit diagrams such as the one in Figure 9 carefully, you will
notice that there is always a resistor in front of each LED. The resistor is used
to reduce electrical current passing through the LED and to ultimately avoid
damaging the LED.

Use Ohm'’s Law, V (voltage, volts) = | (current, amps) x R (resistance, ohms) to
determine required resistor. There are online calculators that help you to
calculate the most suitable resistor size for your project.

The easier way to work out the resistance of a resistor is to use a multi-meter
such as the one shown here. Basic multi-meters can be very inexpensive and
can be found for less than $10. For example, here’s a link to a basic multi-
meter from Jaycar:

https://www.jaycar.com.au/low-cost-digital-multimeter-dmm/p/QM1500

Figure 5 Resistor Example

Figure 6 - Digital Multi-meter

The harder way to work out the resistance of a resistor is to use the colour markings on the resistor
to determine the resistor value. This is useful when you do not have a multi-meter.

Here are the steps to read the colour code:

1. Identify the band that is slightly farther away from the others (e.g. the brown band in Figure 7)

Position the band identified in Step 1 to the right-hand side

2
3. Read the colour bands from left to the right and ignore the last one on the right
4

Different colour represents different value:

4-Band-Code

2%, 5%, 10% 560k Q +5%
L LI n Mi L@ L |

el T

L LIgn L
0.1%, 0.25%, 0.5%, 1% 237Q +1%
5-Band-Code

Figure 7 Resistor Colour Code

The resistor value in Figure 5 is 339Q with +/-1% tolerance.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Page 7 of 30

http://www.ohmslawcalculator.com/led-resistor-calculator
https://www.jaycar.com.au/low-cost-digital-multimeter-dmm/p/QM1500

2.1.6 LEDs
LEDs (Light emitting diodes), like all diodes, do not work if they are plugged in the wrong way.

Electrical current goes ‘into’ the LED at the anode (positive terminal) and ‘comes out’ at the cathode
(negative terminal). Figure 8 shows a few tips on how to identify the anode and cathode.

LEDs do not follow Ohm’s Law. They have a voltage drop across them and have a safe, or limiting,
current that may flow through them without damaging the LED. Resistors must be used to limit the
amount of current flowing through a LED. Use Ohm’s Law to work out the required resistance. First,
subtract the voltage drop across the LED from the voltage in the circuit (or part of the circuit), then
divide by the allowable current. There are also online calculators to help you work out the required
resistor.

ANODE CATHODE

n _
//

FLAT

_ F=

ANODE | CATHODE

ANODE CATHODE

BLOCK
signalling

Figure 8 How to identify anode and cathode of an LED

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 8 of 30

http://www.ohmslawcalculator.com/led-resistor-calculator

2.1.7 Schematics

An important step to learning circuitry is to learn how to read schematics. Figure 9 is the schematic
of an Arduino board. It is for demonstration purpose only, it is NOT a requirement to understand
schematics as complicated as the one below, this is an example of what you might be using in
industry. The tutorial exercises will help you to start reading, understanding and implementing
simple schematics. Figure 10 lists a few electrical symbols that are frequently used in electronics
projects. These electrical symbols help you to identify the components in the schematics. The
highlighted ones in Figure 10 are used in this subject and it is a requirement to know how they are

connected. You can test yourself by identifying all the LEDs in Figure 9. Do you notice that thereis a
component that is always next to a LED?

SCK__SCE

rsn hse o

EESF TRESET

PB&(XTAL1/TOSC1)

PBT(XTAL2TOSC2)

ATmega328 0o | yin / BU Regulator
b - POHER _JACKSHD Llliii?
ELPIN (0L I ool
MBRAL148
50 - s _L |_"D
E wTE " 370
[=3 il 271
OTR F_E:||d l RESF T2 -ﬁT”rEGH - 23
1] { PC&(/RESET) 24 SNo GND
2 02 —
e R L
. 27 AN4 5 T=n
o] AN5 6 SE

1 l—T . [—, u‘:';—}
= LI R T

LED.
GREEN

¥

GHND

AGND
GND

GND

GHD

cia

UL
TP GND 73 o1
z LED1 r1 ; FOSFET-PCHANNEL SHD
GND BMD ELUE =
. 5U 3.3u
BND T Uz T
IN OUT
FT232RL (USB-to-Serial Converter . J_m
e &hD
= - 107
IL_D GND Ic28 j_ BN BP
FL 5 C& -
GNO ULSE LSBU 5U A= & ! 7 MIC5203
~ = 2 ov @.1uF GND GND
= 5B8m: Ll T T LHU35S 3.3U
n-1 SBDA Y0 1
ei5 | Ussop Rxp |5 X wle sle GND GhD
=0 =0

Tear
1z ELLJ_ cas5 |

GND

T~
a.1uf D.J_uFTiUUF

GND GNO

FT23Z2ALSS0P

opan harduare

Released under the Creative Commons Attribution Share—filike 3.8 Lic|

ativecommons.org/licenses/by-sas 3.0

j=IH
i, D.Cuartie

esign
MBanz

=3, T.Jgoe, GMarting, D.Mellis, JLindblom

[z

]

TITLE: RedBoard-vBé

‘ SFE

Document Number:

REU:

Date: 11/14/2012 11:33:07 AN

Sheet: 1/1

Figure 9 Schematics of Sparkfun RedBoard

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Page 9 of 30

Resistors Variable Resistors Switches
Variable Potentiometer SPST SPDT SP3T DPDT
Capacitors Inductors Diodes
£l
T T AR e b b
Polarized LED |Photodiode Schottky Zener
Voltage Sources Batteries Voltage Nodes
L+ L VCC 5V W+
T 1)y L
Al 1 cell 2 cells GND | GND AGND

—1

PE—

DAL=

EEJTS’EIE _I{C n-Channel MOSFETs p—ChaQnel MSOSFETg

B B j S
BB SR B B

PNP NPN tl g _-S s l_é D -D o

Logic Gates

))E) o

NAND XNOR

Integrated Circuits

T
]
I
| —f N ouT |}
| oI OUT—
! —1 GND
| ADJ 3
| l «— EN BP |-
]
| Voltage Regulators
00380 CEEZZ O62F0
00009 ® Zerzs =000
LLII 5 F00zF Z929;
ormMm oL DXD'QQ ,_L,_w--f) 112
[SRERERLyayal BF ER mep 9
- T~ £ tNE A vee peomos) e
=5 @ - . o m o . : B
gr - oo z PBI(MISO) [Ee
2 & o PB2(SCKIADC1) [7-=
= g g o' PB3(ADC3} &=
o E & g . PB4(ADC2) e
o z = 2 «| GND FBS(NRES) |—
o v 0] - —
z Bo i & = =)= o Tiny45-20-SMT
[&] =0 14 o m z= =
wlEd == < oo oo |E
= <
TH { 14 H
Microcontrollers

Figure 10 - Electrical Symbols

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Page 10 of 30

2.2 Tutorial Exercises

For these exercises we have provided you with a mechatronics kit that has all the components
needed (you will need to share one kit between 2-3 students). However, you will need to have a
computer with a USB port to connect and run the Arduino board. The power source provided in this
tutorial is through the Arduino board. We will use the Arduino as a power source and use its
microcontroller and code to control the circuits we create.

For these exercises we have provided both the schematic and the wiring diagrams. You should make
sure you use and refer to both as you create the circuit. Usually in practice you would not have a
wiring diagram, just the schematic. Resist the temptation to just copy the wiring diagrams. As you
work your way through the exercises try to first implement the schematic without referring to the
wiring diagrames.

The Arduino should ALWAYS be disconnected whenever you are wiring. Make sure the Arduino is
unplugged from power (i.e. disconnect the USB cable).

2.2.1 Exercise 1: Simple LED Circuit

Attempt to wire up the circuit shown below as a schematic. Make sure the Arduino is unplugged
from power (i.e. disconnect the USB cable). The Arduino should ALWAYS be disconnected whenever
you are wiring.

Use the digital multi-meter (DMM) to measure the resistor values and check that you have the
correct resistor. Use of the DMM is explained in the Lynda.com course Electronics Foundations:
Fundamentals. If you don’t know how to use the DMM, ask other students at your table if they know
and ask them to show you. If no students at the table know, ask the tutor.

If you don’t have a red LED, use whatever colour you have.

R2
220Q

Arduino
Uno
(Rev3)

*}SZ Iéigl(ssanm)

|

Figure 11 - Arduino LED Schematic

Two alternative wiring diagram solutions are shown below. Do you understand the difference
between the two? Do you understand why they both work? Discuss with other students at your
table.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 11 of 30

https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au

. e
se s s v s e)il se s s 00t s s 0

..
IR S E s R s B EE e e wEEEe TEEE e s e e e e e " oe

Figure 12 - Wiring diagrams for two alternate wiring methods

Connect the USB cable to the Arduino to provide power to the circuit. The LED should light up. If it
doesn’t, check that the power light indicator and the onboard LED on the Arduino board are lit up. If
they are not lit up there may be a problem with the cable or the Arduino. If they are, check that the
LED is connected the right way. If it still does not light up, try another LED.

2.2.2 Exercise 2: LED Challenge
In this challenge, you are required to think about and modify the circuit in Exercise 1 and complete
the following:
1. Calculate the current in the circuit
a. Assume LED resistance is negligible (note that LEDs do not follow Ohm’s Law)
b. Attempt to use LED data: Typical working voltage of a LED: yellow/green/red/orange
1.8-2.2V, blue 2.6-3.0V.
c. Recall/look up Ohm’s Law and/or use an online calculator.
2. Connect another LED in series with the existing LED
3. Connect another LED in parallel with the existing LED (make sure there is a resistor limiting
current to all LEDs)
4, Discuss with your group the current value you calculated and the differences in LED
brightness for each circuit

2.2.3 Exercise 3: Blink

In this exercise you will use the Arduino microcontroller and code to make the Arduino’s onboard
LED blink. You will need to:

1. Download, install and run the Arduino IDE software as shown above.
2. Connect the Arduino board to your computer (via USB cable)
3. Open the Blink example in the Arduino IDE

'[File] Edit Sketch Tools Help Built-in Examples
; : -
New Ctrl+N g;f:‘s'_isl . gnalzﬁR_eadSenal
Open.. Ctrl+0 ARz areMinimum
03.Anzlog [Blink
Open Recent [oac - . o esdsera
Sketchbook) AUEr AL igitalReadSeria
05.Control [Fade
Examples) 06 , T
Close Ctrl+W -ENsars eadAnalogVoltage
- I 07.Displav »

-

& Blink | Arduino 1.6.12

Fi II|-|I ketch Tools Help

Upload

4, Upload the code to the Arduino board

If all is well, you should see something like the following:

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 12 of 30

http://www.ohmslawcalculator.com/led-resistor-calculator

iy

Sketch uses 928 bytes (2%) of program storage space. Maximum is 32256 byte

Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 bytes fo

If it takes a long time and you get an error something like the following, it is most likely because
you have not selected the correct port. Refer to the instructions shown above.

EAY

Problem uploading to board. See hitp:/fwww.arduino.cefen/Guide/Troubleshooting#upload for suggestions. Copy error messages

5. Once you have uploaded the code and observed the LED blinking, change the delay values,
i.e. delay(1000) in the code, upload the code again and observe how the LED’s blinking
frequency changes.

2.2.4 Exercise 4: Blink the LED on breadboard
In this exercise we’ll use the Arduino to control the LED on our breadboard.

e Unplug the USB
® Disconnect the lead from the 5V supply on the Arduino and plug it into digital pin 13.
e Plugthe USB cable back into the Arduino

You should see the LED on the breadboard blinking in time with the Arduino onboard LED.
e Adjust the delay values in the code, re-upload the code to the Arduino and observe both LEDs

blinking together at the adjusted rate
The onboard LED can be referred to as LED_BUILTIN in code and is connected to digital pin 13.
o Replace LED_BUILTIN with 13 in the pinMode function and the two digitalWrite functions.
e Re-upload the code and observe that nothing changes in the functioning of the LEDs
o Now change the three 13sto 12 in the code and upload to the Arduino. Now neither LED light
up.
e Unplug the Arduino. Disconnect the lead from digital pin 13 and connect it to Pin 12. Plug in
the Arduino. You should now see only the LED on the breadboard blinking.
Writing a reference number in multiple places like this is a very BAD way to write code. If we decided
that we want the LED to be controlled from PIN 11 we would have to find all the places where we have
used 12 in the code. Instead, we should declare a variable, i.e. give the number a name that can be
referenced anywhere in the code. We will declare the variable as an integer. E.g.
e add the following to the code
int mylLed =12;
just above
// the setup function runs once when you press reset or power the board
void setup() {
then replace everywhere you had 12 with myLed. Upload the code and observe that nothing
changes.
e Now change mylLed =12 to myLed = 11 and upload the code. The LED should stop blinking.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 13 of 30

e Now unplug the Arduino. Disconnect the lead from digital pin 12 and connect it to Pin 11. Plug
in the Arduino. You should now see only the LED on the breadboard blinking again.

2.2.5 Exercise 5: Blink SOS
In this exercise we'll modify the code from the previous exercise. By the end of the exercise we’'ll
have the Arduino blinking SOS in Morse code.

Save the Blink sketch as BlinkSOS

Modify the code so the on-board LED blinks SOS (see Morse code table and starter code below)
e Verify that the code is correctly written. This is called “compiling” the code. It only tells you if

you have used the language correctly. It doesn’t tell you if your code will do what you think it

should/will do.

@ BIinkSOS | Arduino 1.6.12 e | E S|

e

File Edit Sketch Tools Help

Blinks05 §

f/ Pim 13 haa an TFN roannectad an maat Brdninn hnarda Fs

If all is. well you should see something like the following:

variables. Maximum is 2,048 bytes.

uino Uno on COME

If not, you will get an error message with an indication of where the compiler thinks the error is.
Note: SOS in Morse code is 3 times short, 3 times long and 3 times short (refer to the chart below)

Letter Morse Letter Morse ‘ Digit Morse Letter Morse
A o= N - & = A ==
B -... ‘ o] === ‘ 1 === A m=.-
C -.-. P .. 2 .- A om=.m
D - ‘ Q .- ‘ 3 == Ch ===
13/ R - 4 - H -
" -] s IR N
G == T - 6 - (0] ===
H ‘ U = ‘ 7 = U =
I v - 8 =0

J - ‘ w == 9 -

K .- X -

L . ‘ Y -

M - z =0

*Taken from https://morsecode.scphillips.com/morse2.html
*In the table, “.” means short and “-“ means long

You can use the code below to get started. You can copy, paste and then modify parts of this code to
create your own section of code.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 14 of 30

https://morsecode.scphillips.com/morse2.html

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED BUILTIN as an output.
pinMode (LED BUILTIN, OUTPUT) ;
}

// the loop function runs over and over again forever

void loop () {

// Flash the LED in the 'S' Sequence.

// This is three 'dots' - or 3 short flashes

// Flash once

digitalWrite (LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage
level)

delay(100) ; // wait for a short period of time

digitalWrite (LED BUILTIN, LOW); // turn the LED off by making the voltage
LOW

delay(100) ; // wait for a short period of time

// Flash a second time

digitalWrite (LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage
level)

delay (100) ; // wait for a short period of time

digitalWrite (LED BUILTIN, LOW); // turn the LED off by making the voltage
LOW

delay(100) ;

// Flash a third time

digitalWrite (LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage
level)

delay(100) ; // wait for a short period of time

digitalWrite (LED BUILTIN, LOW); // turn the LED off by making the voltage
LOW

delay(100) ;

//Flash the LED in the 'O' Sequence.

// This is three 'dashes' - or 3 long flashes

/] —————————— INSERT YOUR CODE HERE! - —————————- //

//Flash the LED in the 'S' Sequence.
//This is three 'dashes' - or 3 long flashes
//Wait a litle while so that our SOS messages don't blend together

/] —=—m—m— - INSERT YOUR CODE HERE! ----—-—---- //

//Wait a few seconds so that there's a pause between our SOS messages
delay (3000) ;

If you are thinking “there must be a better way than writing similar code repetitively in order to do
this”, that’s good. Because there is. But we need to use control structures and subroutines or
subfunctions. We will do this next week.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 15 of 30

2.2.6 Exercise 6: Add a Pushbutton to turn LED on and off
In this exercise, you will need to:
e Find the Button example under Examples/ 02.Digital/
e Connect a 10K resistor and the push button to pin 2 (refer to the schematic and wiring
diagrams below) and also https://www.arduino.cc/en/tutorial/button. Have we wired a pull-
up resistor or a pull-down resistor?

R1
5V T 10401 GROUND

1 A

Figure 12 - Pushbutton Schematic

PIN D2

-
-
L
-
*

LA L
LI L L
FE oo s oW

Figure 13 - Connect the pushbutton across the middle of the breadboard like this

TX .)
rxEm Arduino

sesscvsses il vererorereeeees
I I I I I I I I I I
‘I..‘t..“...‘\..“..“l..‘l..

rilocfiiiosiiiioviiioiiii

e Upload the code
Test whether the code is working.

When the pushbutton is open (unpressed) there is no connection between the two legs of the
pushbutton, so the pin is connected to ground (through the pull-down resistor) and we read a LOW.

We can also wire the circuit the opposite way, with a pullup resistor keeping the input HIGH, and
going LOW when the button is pressed. Doing this, the behavior of the sketch will be reversed, with
the LED normally on and turning off when you press the button.

R1
5V 10kQ

S1
r Ground
Pin 2 ' '

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 16 of 30

https://www.arduino.cc/en/tutorial/button

2.2.7 Exercise 7: Add a Pushbutton to Blink SOS
In this exercise, you will need to:
e Understand what you have done in the previous exercises

e Adjust the code and your circuit so that when the push button is pressed, the LED on the
breadboard blinks SOS

2.2.8 Exercise 8: Potentiometer with LED
A potentiometer (or ‘pot’ for short) is a variable resistor. Create the circuit shown below.

LED1
Green (570nm)

R1
3300 AR Ground
5V AW B

Figure 15 - Potentiometer Wiring

If you don’t have a 330Q) resistor a 220Q will do. If you don’t have a green LED, any other colour will
do.

Try turning the potentiometer and observe how the brightness of the LED changes.

2.2.9 Exercise 9: Potentiometer challenge
A potentiometer (or ‘pot’ for short) is a variable resistor. Create the circuit shown below.
e Think about how you can add a different colour LED to the circuit so that when one LED
gets brighter the other LED gets dimmer and vice versa.
e Discuss with your group and draw a schematic.
e Don’t forget to include a resistor in series with the second LED
e Show your schematic to your tutor before you wire it up to avoid damaging any
component
Solution shown at bottom of page but have a go at it yourself first.

J91swonuaod ayi jo uid aueds ayi 03 37 PUOIDS Y3 D9UUOD :UOIIN|OS § 3SIIJDXT

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 17 of 30

3. Week 10
3.1 Background

3.1.1 Learning Arduino
You should have watched the sections indicated in the previous week’s background and the following
sections from the Lynda.com course Learning Arduino (aka Up and Running with Arduino)

e 8. Advanced Projects (at least Programming the Uno to output Morse code 6m 53s)

Use the link from the Week 09 and 10 folder in Weekly Learning Materials on UTSOnline.

Alternately, you can access the course here:
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

3.1.2 Electronics Fundamentals (~ 40 mins)
You should have watched the sections indicated in the previous week’s background and the following
sections from the Lynda.com course Electronics Foundations: Fundamentals

e 3. Power (27 mins)

Use the link from the Week 09 and 10 Folder in Weekly Learning Materials on UTSOnline.

3.2 Tutorial Exercises
The power source provided in this tutorial is through the Arduino board. We will use the Arduino as a
power source and use its microcontroller and code to control the circuits we create.

3.2.1 Exercise 1: Use a Potentiometer to Generate an Analog Signal
In this exercise you will use the Arduino IDE’s Serial Monitor to view the voltage change in the circuit
as you adjust the potentiometer. Create the circuit shown below. Make sure the Arduino is
unplugged from power (i.e. disconnect the USB cable). The Arduino should ALWAYS be disconnected
whenever you are wiring.

Al

""\W LED1

‘,SZ Green (560nm)

GROUND

If you don’t have a 220Q resistor a 330Q will do. If you don’t have a green LED, any other colour will
do.

An indicative wiring diagram is provided below. Try to complete the wiring BEFORE looking at the
wiring diagram below. Make sure you understand how to read the schematic and how it gets
implemented in a physical circuit. Do not just copy the wiring diagrams. Your wiring doesn’t have to
be exactly the same as the examples shown.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 18 of 30

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

- s 0w LR B B B L I - L L
O.UCI .‘..' ‘.." LR " " s ¢ O
L. e - .ll...l'..ll..ll...l..
- . - " L B B I B I I R D B R R D LB I R B
;;: Arduino” LI B " s s Il # # & & & & & & 0 & & % 0 o @
L B - - " L L L B B L B B
o0 om Ll == o LA AL LR BT O T I T T O O
co.o-co.lconEc O BB I O O I R O O
- " . - L L L B D L B B B
" " e e ¢ e ¢ v IIDmEEIED ¢ LI B B T I T O T R O
LA B U I B O B R B 8 8 F SR
L B B N D L D I DL I B B B L R L L
- " " 8 - " " L I - " " 8w L B
LI O A LI A A 5 s LI I O LI A A A

Before connecting the USB cable to power the board:
e Check your wiring. Get a person in the group who has not done (much/any of) the wiring
to check the wiring. If in doubt, ask the tutor to check your wiring.
e Once checked, connect the USB cable to the Arduino.
e Adjust the potentiometer to observe the LED brightness change.
Now we will use the Arduino to read the voltage in the circuit.
e Create a new Sketch called PotRead. Copy and paste the code provided below (replace all
of the default code) and upload the sketch to the Arduino board.

Code for PotRead sketch

/*

Potentiometer Analog Sensor

UTS 48610 - Introduction to Mechanical and Mechatronic Engineering - Autumn 2017

Written By Jason Ho, modified by Terry brown

Any Questions? Try finding the answer for yourself before just asking your tutor.

Feeling confident? Try modifying or adding to this code to add special features for your WPV i.e Flashing lights or
even a data transmitter.

Additional Notes:

Camelback notation: You will see words like "statusLightsAreGood" with a lowercase first letter.

*/

#define Serial_Update_Interval 500
#define Analog_Pin Al

unsigned long oldMillis; // this stores the last value of millis when the Serial monitor printed the value of Al

void setup()

{
Serial.begin(57600);// this connects the serial port

pinMode(Analog_Pin, INPUT);// this sets the pin’s mode to be an input

Serial.println("--------=--=--=-mmmmmemaeeee ");
Serial.println("UTS IMME Analog Pot Reader");
Serial.println("--------=--=--=-mmmmmemaeeee ");
Serial.println("");

}

void loop()
if (millis() - oldMillis >= Serial_Update_Interval) { // this checks if the interval time has passed (to avoid

spamming the monitor)
Serial.print("Analog ");

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 19 of 30

Serial.print("A1");
Serial.print(" Reading: ");

Serial.println(analogRead(Analog_Pin));

oldMillis = millis();// this stores the current time which will be used to check if the interval time has passed for

the next iteration

}
}

e Use the serial monitor to see the output from the

potentiometer

e You will need to change the baud rate to match the

rate setin the code

e Adjust the potentiometer and observe the output in the serial

monitor and the LED brightness change.

e the numbers will vary between 0 and 1023. The reason for this is that
the Arduino is doing an analog to digital conversion and the analog

Serial Monitor E
h

230400 baud |
250000 baud ™

pin is converting a voltage between 0 and 5V to a discreet number.

9 COM15 (Arduino/Genuino Una)

= 5] [|

Bnalog
Bnalog
Bnalog
Analog
Analog
Analog
Analog
Analog
Analog

Al
Al
Al
Al
Al
Al
Al
Al
Al

Reading: 1021
Reading: 1021
Reading: 1021
Reading: 1021
Reading: 500
Reading: 423
Reading: 410
Reading: 412
Reading: 412

-

-

Autoscrall

:No line ending v: :57600 baud v: Clear output

3.2.2 Exercise 2: Use Analog Signal
In this exercise you will use the value recorded by the analog pin to adjust the brightness of another

LED.

e Add ared (or any other colour) LED to the circuit (don’t forget the resistor) and connect
the LED to digital pin 2 as shown below:

LI)
LI)
-

-

-
TR

e 11 T “q- . o=l
IIIIIIIIII..E. LI T B A BT A O O B A
.o . I T B S S TR T T B O O
* o e 0 v e s s I v LU AR DL B B B DR B
LRI R I A O I LI B S A I I I
LI B TR B S B TR R T ST S B S I TR ST T T R T R BN R R O

L
LI)
LI I)

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 20 of 30

e We will add the code #define myLED 2 which uses #define to declare a constant (#define is
a way of defining a constant in C. It can be useful but requires care in its use. Read more
about it here.)

e we can now use the name myLED to refer to digital pin 2 elsewhere in the code

e we now need to set pin 2 as an output. Have go at doing that on your own before looking
to see if you can find it in the modified code provided below.

e We will also use the if...else control structure to control the new LED based on the value
of Al. Read more about it here. Can you find where it is used in the code and understand
how it works?

e Create a new sketch. Name it whatever you like. Cut and paste and upload the following
code:

#define Serial_Update_Interval 500
#define Analog Pin Al
#define myLED 2

unsigned long oldMillis; // this stores the last value of millis when the Serial monitor printed the value of A1

void setup()

{
pinMode(myLED, OUTPUT);// this sets the pin’s mode to be an output

Serial.begin(57600);// this connects the serial port
pinMode(Analog_Pin, INPUT);// this sets the pin’s mode to be an input

Serial.println("--------=--=--=-mmmmmemeeee ");
Serial.println("UTS IMME Analog Pot Reader");
Serial.println("--------=--=--=-mmmmmemeeee ");
Serial.println("");

}

void loop()

if (millis() - oldMillis >= Serial_Update_Interval) { // this checks if the interval time has passed (to avoid
spamming the monitor)

Serial.print("Analog ");
Serial.print("A1");

Serial.print(" Reading: ");
Serial.println(analogRead(Analog_Pin));

oldMillis = millis();// this stores the current time which will be used to check if the interval time has passed for
the next iteration

}
if (analogRead (Analog_Pin) >= 700) { // this checks if Analog_Pin is greater than or equal to 700

digitalWrite(myLED, HIGH); // turn the LED on (HIGH is the voltage level)

}
digitalWrite(myLED, LOW); // turn the LED off by making the voltage LOW

}

e Observe the serial monitor values and watch the new LED turn on and off as you adjust
the potentiometer.
e Adjust the code to experiment with how it works to further your understanding.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 21 of 30

https://www.arduino.cc/reference/en/language/structure/further-syntax/define/
https://www.arduino.cc/reference/en/language/structure/control-structure/if/

3.2.3 Exercise 3: LED and Photo Interrupter
In this exercise you will use a photo interrupter to turn a LED on and off

e Attempt to create the circuit shown in the schematic below. Be careful. Have your circuit
checked before connecting power.

e Refer to the photo interrupter drawings and schematic when connecting the photo
interrupter (be careful, the terminal lettering isn’t obvious. Look carefully at the top of the
photo interrupter and you will see the terminal letters. Also note the chamfered edge on
the top left edge (front view) to help you correctly orient and connect the photo
interrupter.

e Attempt to interpret the circuit schematic and the photo interrupter drawing and
schematic and wire up your circuit before looking at the wiring diagram provided further

below.
R2 Photo Interruptor
Sv 330Q Ground
WW)I
AVR
Green 570nm) R
reen nm 330Q
Ground 5v
X < MW
P74

If you don’t have a 330Q2 resistor a 220Q will do. If you don’t have a green LED, any other colour will
do.

11,9401 B3.3%2
)) /
[A ! K C
. A F - x -
e I 6.310.1
i : & T P N { 610‘;1 .
N C 1/ -
K !
19401 As oF
24.540.1
3.1£0415
0.6
T e
| ED
N 3.8£0.1 i
10.8%0.1
31401
i
0,38 0.5
7.0MIN
76401 |) 125401
Cathode—, Collector
r L \ Pé IR NOTE:
TN o o TN , , T)
1. 4 L1 1. All dimensions are in millimeter.
‘ ~ A o) 2. Tolerancs is + 0.25.
Anode “—Emitter

Photo Interrupter drawing and schematic (note that the schematic is the view from the bottom)

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 22 of 30

rxmm Arduing’

L
" e w
L
" e w
1
L
L I
L
L I
L
L I
L
L I
LI I
L
LI I

L
L A
L
L
L
L
LI
L
LI A
L
LI A
L
LI I A
L
LI I A
L A
LI I A
L A
LI I A
L A
LI I A
L A
LI I A
L A
LI I A
LI
LI I A
L A
L
L A

Photo Interrupter wiring diagram

e Place your student card or something similar in the photo interrupter slot.
e What happens to the LED?

3.2.4 Exercise 4: Line trace sensor
In this exercise you will use a line trace sensor to detect an object or an edge. This is a very useful
sensor that can be used to monitor start and finish lines. You’ll be using one in your wind powered
vehicle project.
e Find the line trace sensor module in your mechatronics kit

e Create the circuit shown below to power the line trace sensor.

e Place your student card (or something similar) in front of the sensor to observe the
sensor’s onboard red LED light up

e Turn the potentiometer to adjust the sensor sensitivity. Investigate and observe how this
affects how close to the sensor the object is detected. Test different surface finish objects.

5V

Part2
Line trace sensor

2

Weo

KY033

Ot f—

rxmm Arduino”

G

GND

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 23 of 30

3.2.5 Exercise 5: Line trace sensor with serial plotter
In this section we’ll write some code to interface with the line trace sensor module and use the
Arduino’s serial plotter.
e Add a connection from the sensor’s signal terminal to the analog pin A0 as shown below.

L

X - D
rx#m Arduino

e Create a new Sketch called LineTraceSerialPlotter and then cut and paste and upload the
following code.

/*
Line Trace Serial Plotter
UTS 48610 - Introduction to Mechanical and Mechatronic Engineering

Written By Peter de Jersey
Any Questions? Google it before asking your tutor.

*/
#define Analog Pin A0

unsigned long oldMillis; // this stores the last value of millis when the Serial
monitor printed the value of A0

void setup()

{
Serial .begin(19200) ;// this connects the serial port

pinMode (Analog Pin, INPUT);// this sets the pins mode to an input
}

void loop () {
int reading = analogRead(Analog Pin) ;
Serial.println(reading) ;
delay (20) ;

}

After you’ve uploaded the code, open the serial plotter. This is an extremely useful tool that allows
you to plot information from the serial port. See below:

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 24 of 30

File Edit Sketch | Tools Help @ @ B

Auto Format

Archive Sketch

Fix Encoding & Reload
Serial Monitor

Serial Plotter

@ Arduino

WiFi101 Firmware Updater

S ketch_ma

Board: "Arduino/Genuino Uno"
Port: "/dev/cu.usbmodem1421 (Arduino/Genuino Uno)"

Once you’ve opened the serial monitor you will see a graph that updates continually. It will look
something like this:

& Arduino 0 % W) = 7% E)

[] [] /dev/cu.usbmodem1421 (Arduino/Genuino Uno)
1000.0
=) ———— T ——
750.0
500.0 E
th
ta
250.0
st
0.0 t t t T U
2488 9588 9688 9788 9888 9988
19200 baud &)

a

Note that you may need to change the baud rate to match the setting in the code. You may also see
a bit more ‘noise’ on the high signal depending on your computer and other electronic noise sources.

Here you can see the value of the line trace module. When the sensor does not detect a reflection
the value is high. When it does, it is low. The high value will depend on your sensor’s calibration. This
can be changed by adjusting the potentiometer on the board with a screw driver.

1. Find a white/light reflective surface (e.g. your student card) and bring the sensor close to it

2. The sensor will detect a reflection. The red LED on the circuit board will also light up.

3. Find a black surface and bring the sensor close to it. The light should turn off. Your computer
keyboard can work well if your computer is white and your keys are black. Otherwise think
creatively of what else you could use.

SRR OCOoBDE Q ® ©OMmML } 0 = 7%E)

o [Jdevfcu.usbmodem1421 (Arduino/Genuino Una)

1000-01 No Reflection No Reflection No Reflection

P —_———— T

b.e

750.0 I
Sea.a ko
itk

250.9

Reflection Detected Reflection Detected
st

a.8 t t T t |
G488 9588 D688 9788 G8EE Q9EE

19200 baud [

ia

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 25 of 30

. Sensor on ’ 3 | | Sensor on
non-reflective —— j reflective
surface surface

0 0 0 5 A 0 D G 6B BD &2 2§
..-ﬂﬂ.k‘.------
12997 1 e O i .

AESDOoION GnauEE

P 3 i) (0

IIII-AII-‘-

(5 ——

Think about how this might be used to detect the start and stop lines on your WPV track.

3.2.6 Exercise 6: Line trace sensor with digital output to control a LED
In this exercise you will use a line trace sensor to detect and count the number of times an object or
an edge is detected and to control a LED.
e We will connect a digital pin (8) to read the line trace sensor’s output and use that output
to control a LED connected to another digital pin (13).
e Create the circuit shown below.

.l....'..l.l._mr..l.l.lllll

CEUTEIE I e e ® ® e e @ e e s

B |.....| Bititt

TR . . U L IR > e
"« e ew v e " e e e w e

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 26 of 30

e Check that the line trace sensor is working by observing the onboard red LED light up
when you bring your student card close to the sensor.
e Create a new sketch and copy, paste and upload the following code.

/*

Line Trace Detection

UTS 48610 - Introduction to Mechanical and Mechatronic Engineering
Written By Terry Brown

Modified from StateChangeDetection
created 27 Sep 2005
modified 30 Aug 2011
by Tom Igoe

State change detection (edge detection)

Often, you don't need to know the state of a digital input all the time, but

you just need to know when the input changes from one state to another.

For example, you want to know when a button/sensor goes from OFF to ON. This is called
state change detection, or edge detection.

This example shows how to detect when a button or sensor changes from off to on
and on to off.

The circuit:
- see 48610 IMME Mx tutorial

*/

// these constants won't change:
const int lineTracelnput = 8; // the pin that the line trace sensor is attached to
const int ledPin = 13; // the pin that the LED is attached to

// Variables will change:

int lineTraceCounter = 0; // counter for the number of line trace sensor changes
int lineTraceState = 0; // current state of the line trace sensor

int lastlineTraceState = 0; // previous state of the line trace sensor

void setup() {
// initialize the line trace sensor pin as an input:
pinMode(lineTracelnput, INPUT);
// initialize the LED as an output:
pinMode(ledPin, OUTPUT);
// initialize serial communication and set the baud rate:
Serial.begin(9600);

}

void loop() {
// read the line trace input pin:
lineTraceState = digitalRead(lineTracelnput);

// compare the lineTraceState to its previous state
if (lineTraceState != lastlineTraceState) {
// if the state has changed, increment the counter
if (lineTraceState == HIGH) {
// if the current state is HIGH then the line sensor went from off to on:
lineTraceCounter++;
Serial.println("on"
Serial.print("number of line trace sensor hits: ");

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 27 of 30

Serial.println(lineTraceCounter);
} else {
// if the current state is LOW then the line sensor went from on to off:
Serial.println("off");
}
// Delay a little bit to avoid bouncing
delay(50);
}
// save the current state as the last state, for next time through the loop
lastlineTraceState = lineTraceState;

// turns on the LED every four line sensor 'hits' by checking the modulo of the
// line sensor hit counter. the modulo function gives you the remainder of the
// division of two numbers:
if (lineTraceCounter % 4 == 0) {

digitalWrite (ledPin, HIGH);
}else {

digitalWrite(ledPin, LOW);
}

e Check that the line trace sensor is working by observing the onboard red LED light up
when you bring your student card close to the sensor.

e Upload the following code.

e Start the serial monitor. If you see something like the following you will need to change
the baud rate to that specified in the code. Find where the baud rate is set in the code.

9 COM15 (Arduino/Genuino Uno) l = | [=] ﬂ

O00O0F0O00f££0 £x O0x 0O0000f ~ f00fx OO0fxOO0 O 000 000~ OO0 OO

[¥] Autoscrall :No line ending v: :19200 baud v: Clear output

e Once you set the correct baud rate you should see the following (if the line trace sensor is
not detecting anything)
ool 'cqms (Arduino/Genuino Uno

on
number of line trace sensor hits: 1

e Now use your card to ‘trigger’ the sensor several times.

e You should see something like the following

e You will also see the LED connected to pin 13 turn on and off intermittently. See if you can
interpret the code to understand what is happening.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 28 of 30

& COM15 (Arduino/Genuino Una)

Send

on
number of
off
on
number of
off
on
number of
off
on
number of
off
on
number of
off
on
number of

3.2.7

line

line

line

line

line

line

trace

trace

trace

trace

trace

trace

Sensor

Sensor

Sensor

3ensor

3ensor

sensor

hits:

hits:

hits:

hits:

hits:

hits:

When writing this code | modified open source code based on using a push button, hence
“on” and “off” as output. See if you can adjust the code so that it outputs “detected” and

“not detected” instead.

Exercise 7: WPV desktop prototype

You have now used all of the components that you will use for your data acquisition module for your
wind powered vehicle. It is good practice to create desktop prototypes of electronic control modules
before installing them in a device. In practice we would also create printed circuit board (PCB) from

our schematic rather than using a breadboard in an actual mechatronic device.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

Download from UTSOnline the WPV Mx module schematics and wiring diagram.

Attempt to create a desktop prototype of the WPV Mx module

Test your prototype to see if it works correctly

Page 29 of 30

Arduino coding cheat sheet
(there is a better resolution version of this on UTSOnline)
ARDUINO CHEAT SHEET

For more information visit: http: #arduino.cclen/Reference/

Structure
+ Each Arduino sketch must contain the
following two functions. *

void setup()
(

* this code runs once at the beginning of
the code execution. *

}

vad loopy)
* this code runs repeatedly over and over
as long as the board is powered. */

Comments

/1his is a single line:
[thisis

a multiline */

Setup
pinMode(pin, [INPUT \ QUTPUT \ INPUT PUL-
LUPY)

/* Sets the mode of the digital I/0 pin.
It can be set as an inpat, output, or an
input with an internal pull-up resistor.

Control Structures
ificondition)
{
/ if condition is TRUE, do somsthing here
)
else

/ otherwise, do this

}

fori] ization; condition; i

/ do this

* The 'for’ statemsat is used to repeat

a block of statements enclosed in curly

braces. An increment counter is usually

used to increment and terminate the loop.
parentress

deciars variable (opticnal)

Intiallze test Incrementor

decremant

for(int x = 0: x < 100; x+4) {

println(x): // prints 0 to 99

Digital VO
digitalWrite(pin, val):

{* val = HIGH or IOW write a HIGH or a IOW
value to a digital pin. */

int var = digitalRead(pin);

/* Reads the value from a specified digital
pin, either HIGH or IOW. */

Analog VO
analogWrite(pin, valj;

/* Writes an analog value to a pin
val = integer value from 0 to 255 */
Int var = andogRead(pin);

/% Reads the valuve from the specified
analog pin. *

Advanced VO

tonefpin, freq:

/* Generates a square wave of the specified
frequency to a pin. Pin must be one of the
PWM (~) pins. */

tone(pin, freq, duration);

/* Generates a square wave of the specified
frequency to a pin for a duration in
milliseconds. Pin must be one of the PWM (~)
pins. v

noTone(pin).

// Turns off the tone on the pin.

Time

delay(ime ms);

/* Pauses the program for the amount of time
(in milliseconds). */
delayMicrosecondsitime_us}

/* Pauses the program for the amount of time
(in microseconds). */

milks{),

/* Returns the number of milliseconds since
the board began running the current prograsm.
me 4,294,967,295 */

microsi);

/* Returns the nosber of microseconds since
the board began running the current program.
max: 4,294,967,205 «/

Data Types
vaoid // nothing ie returned
boolean // 0, 1, false, true
char / 8 bits: ASCII character
byte 8 bits: 0 to 255, unsigned
int 2,768 to 32,767, signed
long 2,147,483,648
to 2,147,483,647, signed */
fioat / 32 bits, signed decimal

Constants
HIGH\LOW
INPUT\ QUTPUT
true\ faise

Mathematical Operators
= /! assignment
+ // addition

sobtraction
multiplication

I 17 aivision
% // medulus

Loglcal Operators

// boolean equal to
not equal to
< // less than
greater than

v

<= // less than or equal to

= // greater than or equal to
&& // Boolean AND

I Boolean OR

Boolean NOT

Bitwise Operators

& // bitwise AND

or

// bitwise XOR

~ // bitwise INVERT

var<<n bitwise shift left by n bits
Var>>N // bitwise shift right by n bits

| 77 bvit
A

Libraries

#include <libraryname h>

* this provides access to special
additional functions for things such as

servo motors, 8D card, wifi, or bluetooth

RedBoard

LEDs

{Light Err iting Drces)

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS

USBH to Computer

Page 30 of 30

	1. Introduction
	2. Week 9
	2.1 Background
	2.1.1 Learning Arduino
	2.1.2 Electronics Fundamentals
	2.1.3 Installing the Arduino IDE
	2.1.4 Wiring
	2.1.5 Resistors
	2.1.6 LEDs
	2.1.7 Schematics

	2.2 Tutorial Exercises
	2.2.1 Exercise 1: Simple LED Circuit
	2.2.2 Exercise 2: LED Challenge
	2.2.3 Exercise 3: Blink
	2.2.4 Exercise 4: Blink the LED on breadboard
	2.2.5 Exercise 5: Blink SOS
	2.2.6 Exercise 6: Add a Pushbutton to turn LED on and off
	2.2.7 Exercise 7: Add a Pushbutton to Blink SOS
	2.2.8 Exercise 8: Potentiometer with LED
	2.2.9 Exercise 9: Potentiometer challenge

	3. Week 10
	3.1 Background
	3.1.1 Learning Arduino
	3.1.2 Electronics Fundamentals (~ 40 mins)

	3.2 Tutorial Exercises
	3.2.1 Exercise 1: Use a Potentiometer to Generate an Analog Signal
	Code for PotRead sketch
	3.2.2 Exercise 2: Use Analog Signal
	3.2.3 Exercise 3: LED and Photo Interrupter
	3.2.4 Exercise 4: Line trace sensor
	3.2.5 Exercise 5: Line trace sensor with serial plotter
	3.2.6 Exercise 6: Line trace sensor with digital output to control a LED
	3.2.7 Exercise 7: WPV desktop prototype

	Arduino coding cheat sheet

